What's new

EmDrive: Chinese space agency to put controversial tech onto satellites 'as soon as possible'

Jerry Pournelle talks about China's orbital tests of the EMDrive as a bigger than Sputnik moment
December 26, 2016

Jerry Pournelle is a famed science fiction author who also had an interesting technology career

Jerry Eugene Pournelle (born August 7, 1933) is an American science fiction writer, essayist and journalist who contributed for many years to the computer magazine Byte. Pournelle was an intellectual protégé of Russell Kirk and Stefan T. Possony. Pournelle wrote numerous publications with Possony, including The Strategy of Technology (1970). The Strategy has been used as a textbook at the United States Military Academy (West Point), the United States Air Force Academy (Colorado Springs), the Air War College, and the National War College.


Pournelle worked in the aerospace industry includes time he worked at Boeing in the late-1950s. While there, he worked on Project Thor, conceiving of "hypervelocity rod bundles", also known as "rods from God". He edited Project 75, a 1964 study of 1975 defense requirements. He worked in operations research at The Aerospace Corporation, and North American Rockwell Space Division, and was founding President of the Pepperdine Research Institute. In 1989, Pournelle, Max Hunter, and retired Army Lieutenant General Daniel O. Graham made a presentation to then Vice President Dan Quayle promoting development of the DC-X rocket.

Jerry says, the question becomes, given the magnitude of this, why is it a surprise? We have 21 expensive intelligence agencies; not one of them knew the Chinese orbited an EM Drive? Of course it will be a while before we can do orbital tests. We have no rockets. That’s preparedness. Perhaps Elon Musk or Jeff Bezos can help? This is a signal larger than Sputnik. If the Intelligence Community knows about Russian hacking, why doesn’t it know about Chinese testing of a reactionless drive?

Nextbigfuture has covered the EMDrive and the propellentless Cannae drive

China's space agency has officially confirmed that it has been funding research into the controversial space propulsion technology EmDrive, and that it plans to add the technology to Chinese satellites imminently.

The China Academy of Space Technology (CAST), a subsidiary of the Chinese Aerospace Science and Technology Corporation (CASC) and the manufacturer of the Dong Fang Hong satellites, has held a press conference in Beijing explaining the importance of the EmDrive research and summarizing what China is doing to move the technology forward.

China Academy of Space Technology (CAST) team statements corresponds with information provided to IB Times from an anonymous source. According to their informant, China already has an EM Drive on board its version of the International Space Station, the space laboratory Tiangong-2.

Chinese researchers have at least constructed an EM Drive and have been studying it for more than five years now.

Chief designer of the CAST communication satellite division, Li Feng, told the media that so far their EM Drive only produces millinewtons of thrust (similar to NASA's version) and to make it functional, they need to get those levels up to between 100 millinewtons and 1 newton.

The team is allegedly now working on the cavity design of the EM Drive and the position of the thruster, before testing their new versions on their satellites in orbit.

Logically if an EMDrive was placed on Tiangong-2 and no thrust was produced, this would be apparent right away. If tiny thrust was produced in orbit and in a vacuum then further research would be pursued. Further research could still occur if thrust seemed to be produced on the ground but did not appear in orbital microgravity. However in the case of no result in orbit, then the CAST team would probably not hold a press conference.

"This technology is currently in the latter stages of the proof-of-principle phase, with the goal of making the technology available in satellite engineering as quickly as possible," Li Feng explained at the press conference.

"Although it is difficult to do this, we have the confidence that we will succeed."



http://www.nextbigfuture.com/2016/12/jerry-pournelle-talks-about-chinas.html
 
Cutting-Edge Thruster Gives Space Program a Lift
By Yu Dawei and Teng Jing Xuan
1482730319450230_660_440.jpg

The Shijian-17 satellite, loaded with the HEP-100MF thruster, is launched by a Long March 5 rocket in the Wenchang Satellite Launch Center in Hainan province on Nov. 3. Photo: Xinhua
A unique thruster mounted on a recently launched satellite has given China's space program an edge over international rivals and opened a door to deep-space exploration.

The HEP-100MF thruster, jointly developed by research teams from the Harbin Institute of Technology (H.I.T.) and the China Academy of Space Technology's (CAST) Institute 502, successfully debuted Nov. 22 aboard an orbiting Shijian-17 satellite. The satellite was launched Nov. 3 by a Long March 5 rocket.

"The thruster ignited successfully in geosynchronous orbit," the H.I.T. announced. The ignition "marks the first application of magnetic-focus (HEP-100MF) in space.

The HEP-100MF propulsion system relies on a magnetic field to convert and control the propellant — a plume of charged ion particles — that generates the thrust needed at times to stabilize the orbiting Shijian-17.

A system that relies on magnetic-focus, ion plume propulsion is less likely to damage a thruster's mechanism than other propulsion systems, scientists say. It's also considered more efficient than traditional chemical-propulsion thrusters.

Chemical fuel propelled the powerful Saturn V rockets that helped the U.S. space program put men on the moon from 1969-72. But the Saturn V's first-stage engines burned out in less than three minutes, scientists say, and most of the rocket's fuel was used to propel its own weight.

Chemical propulsion systems have been commonly deployed for years to stabilize communications satellites, which require constant adjusting while in orbit. Sooner or later, though, these thrusters run out of fuel.

The HEP-100MF might be used for deep-space missions because it's designed for longevity. The thruster "can be applied to space station, deep space exploration (and) high- and low-orbit Earth satellite orbit control," the H.I.T. said.

China has not announced plans for a deep-space mission, but the nation's space program has been expanding rapidly. Recent developments include new rockets and the launching of a manned space station.

Hunting for Thrust

The HEP-100MF is based on so-called "Hall-effect thruster" technology, which has been tested on the ground by researchers at American, Russian, European Union and Japanese space agencies.

But China's thruster aboard the Shijian-17, which the official Xinhua News Agency said was built to "verify new technology," was the first to be successfully tested in space. It's also dramatically unlike propulsion systems of the past.

After the engines on a Saturn V rocket burned out, the rocket's payload went into "space glide" mode, using inertia and gravity's pull to hurdle toward a destination. But additional thrust is needed to propel a gliding spacecraft beyond the solar system and into deep space.

Scientists have been working for years to develop long-lasting, deep-space-capable alternatives to chemical propulsion. Research into electric propulsion, for example, was under way in the United States and the Soviet Union even while the first Apollo missions were putting men on the moon more than 40 years ago.

Chemical propulsion is the best option for a short burst of power, but mass can be moved via electric propulsion over a much longer period. Using a chemical propulsion system, 1 kg of mass can be moved for 300 seconds using 1 kg of fuel. But an electric propulsion system can perform the same task over a period of 9,000 seconds, or two and a half hours.

U.S. researchers led by scientist Harold Kaufman of the National Aeronautics and Space Administration (NASA) worked on electron bombardment thrusters, which are now called Kaufman thrusters. Soviet researchers, guided by A. I. Morozov of the Kurchatov Institute, focused on the Hall-effect thruster technology.

Kaufman thrusters are more fuel-efficient and have a higher specific impulse than Hall-effect thrusters. But the Hall-effect thruster mechanism is less complicated and smaller than its rival.

The first Kaufmann thruster for a deep-space mission kicked into action aboard NASA's Deep Space 1 spacecraft in 1998. It delivered a relatively small amount of thrust — roughly equivalent to the amount of gravity-induced pressure that keeps a single sheet of paper lying flat on a table. But in space, that was enough thrust to accelerate the spacecraft by up to 32 km per day.

Moreover, the Kaufmann thruster managed to operate for more than 14,000 hours — a longer lifespan than all of the world's chemical propulsion engines ever built put together.

Hall-effect thrusters have been used to propel more than 238 communications satellites since 1971. But researchers have been unable to overcome the system's shortcomings, such as its relatively short lifespan and the fact that its ion plume can damage the thruster mechanism.

Chinese Breakthough

Chinese space scientists considered but then abandoned the idea of using electric thrusters for satellites in the 1980s. But then researchers, led by H.I.T. scientist Yu Daren, a child prodigy who joined the institute at age 15, built on the success of the Hall-effect thruster to develop the HEP-100MF.

The H.I.T.'s work began in the 1990s, Yu told Caixin in a recent interview, after the Russians could hail the success of their Hall-effect thruster technology and after commercial satellites in the United States started using a so-called ion thruster in 1997.

A wave of Chinese researchers that included Yu initially tried to replicate Mozorov's findings in their own labs. Eventually, they decided to go beyond the Russians by using magnetism to confine the thruster's damaging plume.

Mozorov's team had developed a rudimentary magnetic-focus system. But when Yu's team visited Mozorov in Moscow, they found the Russian technology as unreliable as their own.

"The father of the Hall-effect thruster had the same problem: inconsistent performance," Yu told Caixin. "But my team realized that, if it's possible to control the ion jet for even one instant, there's a possibility that we can extend this control, and focus the jet consistently."

Unlocking the secret would require many years of trial and error, Yu believed. Thus, the Chinese space program started giving more attention to electric propulsion.

Interest has grown gradually. Only 20 people attended China's first National Electric Propulsion Conference at HIT in 2005. But 150 scientific papers were submitted to the annual conference in 2016.

In October 2012, China space-tested one Shijian-series satellite with a Kaufman thruster and another with a Hall-effect thruster. Each thruster's experiment lasted seven minutes.

"Forty years of work went into those seven minutes," said Zhang Weiwen, director of the CAST Institute 510, whose scientists developed the thrusters.

In 2015, China Aerospace Science and Technology Corp. Institute 801 researchers announced a breakthrough in Hall-effect technology. They said they had developed a thruster with a lifespan of 75,000 hours that could ignite 15,000 times and burn 18,000 hours without a break.

The following year, Yu's team and CAST Institute 502 researchers said they had developed a Hall-effect thruster that would improve on its predecessor by up to 30 percent, the thruster's chief designer Mao Wei told the South China Morning Post. They called it the HEP-100MF.

The November experiment, which was the first flight test for the HEP-100MF, has fueled confidence in China's propulsion technology and the space program's ability to rocket into deep space.

"The technology for deep-space exploration already exists," Yu said. "All we need now is a go-ahead from the government."


http://www.caixinglobal.com/2016-12-26/101030621.html
 
EMdrive ground experiments need more rigor or someone can pay for conclusive work in space

George Hathaway provides a detailed analysis of the EMDrive and the recent peer reviewed research paper that measured some thrust and tried to eliminate sources of error. Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum is the paper.

Electrical engineer George Hathaway runs Hathaway Consulting Services, which has worked with inventors and investors since 1979 via an experimental physics laboratory near Toronto, Canada. Hathaway’s concentration is on novel propulsion and energy technologies.

White, March and the other NASA funded researchers made considerable effort to reduce the possibility of measurement artifact. However it appears that there are some fundamental problems with the interpretation of the measurement data produced by their thrust balance. This document will analyse the measurement procedure and comment on the interpretation.


In addition to mechanical and related considerations, the authors’ methods of analysis of sensor data to derive thrusts rests on untenable grounds. Not only is there an assumption of the presence of only a “true” impulse signal as well as a thermal signal, there is an assumption that the observed signal can be broken down into just these 2 components and amplitudes can be calculated based on an idealized superposition assumption. Therefore, until more control tests are performed allowing a more accurate method for estimation of thrusts, no faith can be placed in the thrust magnitudes reported in the paper.

Hathaway calls for continued testing of EmDrive concepts and increased rigor in experimental procedures.



China is testing an EMDrive on its space station

The Cannae drive is also propellentless like the EMdrive but is a different design. They will test their system orbit in a cubesat in 2017 Cannae is not using an EmDrive thruster in their upcoming launch. Cannae is using it’s own proprietary thruster technology which requires no on-board propellant to generate thrust. In addition, this project is being done as a private venture. Cannae is only working with a private commercial partners on the upcoming mission.

It costs about $27000 a pound to send cargo to the international space station. Launching an experiment into low earth orbit (and not sending it to the space station) would be cheaper.

A 100 pound EMDrive experiment at the space station would cost about $2.7 million to transport.

http://www.nextbigfuture.com/2017/01/emdrive-ground-experiments-need-more.html
 
EMdrive is a hoax. It does not work.
 
EMdrive is a hoax. It does not work.
Why don't you practice some democracy and vote for it? All you need is to spend $2 billion on commercials and you will get a billion opinions and bazillion votes. Actually why don't you do this every 4 years? Got to be by the people for the people, right? :yahoo:
 
It's controversial because it's not white Americans testing EM Drive but China. China is on the rise. Indian cheerleaders can bash all they want, no one cares
 

Back
Top Bottom